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Abstract 
Generating natural language descriptions of visual content is 
an intriguing task which has wide applications such as 
assisting blind people. The recent advances in image 
captioning stimulate further study of this task in more depth 
including generating natural descriptions for videos. Most 
works of video description generation focus on visual 
information in the video. However, audio provides rich 
information for describing video contents as well. In this paper, 
we propose to generate video descriptions in natural sentences 
via multimodal processing, which refers to using both audio 
and visual cues via unified deep neural networks with both 
convolutional and recurrent structure. Experimental results on 
the Microsoft Research Video Description (MSVD) corpus 
prove that fusing audio information greatly improves the video 
description performance. We also investigate the impact of 
image amount vs caption amount on the image caption 
performance and see the trend that when limited amount of 
training is available, number of various captions is more 
important than number of various images. This will guide us to 
investigate in the future how to improve the video description 
system via increasing amount of training data. 

Index Terms: Video Description, Multimodal Processing, 
Deep Neural Networks 

1. Introduction 
Describing visual content automatically in natural language 
sentences is an intriguing and challenging task. It has attracted 
a lot of research interest lately. With the recent success in 
describing images with a natural sentence [1-3], generating 
natural descriptions for videos has also attracted more and 
more attention in the research community. The task of 
automatically generating descriptions for videos is a very 
complex problem. Although there have been successful 
examples in specific domains with a limited set of known 
actions and objects [4-5], generating descriptions for open-
domain videos or videos “in-the-wild” such as YouTube 
videos remains an open challenge.  

Many of the recent works for video content description use 
Long-Short Term Memory Recurrent Neural Networks 
(LSTM-RNNs) [6] based on the visual information only. 
Visual information in videos has been captured by holistic 
video representations [7-8], or pooling over frames [9], or sub-
sampling on a fixed number of input frames [10]. However, 
human description of video contents may rely not only on the 
visual information but also on other content-related 
information such as audio content which is not directly present 
in the visual source. In this paper, we study improving video 

description via multimodal processing which uses both audio 
and visual information in videos. Our approach follows the 
recent progress in image caption such as in [1]. We also utilize 
a LSTM-RNN to model sequence dynamics and connect it 
directly to a convolutional neural network (CNN) and an 
acoustic feature extraction module which process incoming 
video frames for visual and acoustic encoding.  

The rest of the paper is organized as follows: section 2 
summarizes related works. Section 3 describes the key 
components of our video description system using acoustic 
and visual information. Section 4 presents the experiments and 
case studies on the MSVD corpus and analysis of the impact 
of image vs. caption on performance when limited training 
data is available. Section 5 concludes the paper. 

2. Related Work 
Generating natural language description for images, the image 
caption task, has received a lot of attention and achieved some 
exciting results recently [1-3, 11-14]. Most of the work rely on 
two networks: CNN and RNN in particular with LSTM. CNN 
is used to provide image encoding and LSTM-RNN is used to 
translate from images to sentences of flexible length. Some 
public datasets have been accumulated in the community such 
as the Flickr30k corpus [15] and the Microsoft COCO 
(MSCOCO) corpus [16]. There are also studies to emphasize 
the novelty of generated descriptions [17].  

With the success in image caption, video description task 
has attracted more and more interest lately [4-5, 7-10, 18]. 
Most of the works study the task of describing short video 
clips with a single sentence. Similar to image caption methods, 
they also rely on CNNs and LSTM-RNNs for video 
description. It has been shown that pre-training the LSTM-
RNN network for image captioning and fine-tuning it to video 
description is beneficial [9].  Some work [19] also builds a 2-
D and/or 3-D CNN for learning powerful video representation 
and the LSTM-RNN network for generating sentences and a 
joint embedding model for exploring the relationships between 
visual content and sentence semantics.  

Most previous researches targeting the problem of 
generating natural language descriptions for videos rely on 
visual content only. However, acoustic information also plays 
an important role in explaining and understanding an 
event/action in videos. In semantic concept annotation and 
classification of videos, fusion of audio and visual cues has 
been demonstrated very helpful, such as in the TRECTVID 
Multimedia Event Detection (MED), Multimedia Event 
Recounting (MER), Surveillance Event Detection (SED), and 
Semantic Indexing (SIN) Systems [20]. In this paper, we 
conduct a pilot study on utilizing both acoustic and visual 
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information to improve the visual only video description 
baseline. 

3. System Description 
Our video description system relies on deep models such as 
CNN and LSTM-RNN, which is similar to what was proposed 
by Vinyals et al. in [1]. An illustration of our description 
system is shown in Figure 1. The visual-only description 
system shares the similar system structure with the audio-only 
system. The difference lies in the feature encoding component. 
The visual-only system uses CNN for feature encoding while 
the audio-only uses bag-of-acoustic-words for feature 
encoding. There are two phases in the system execution: 
training phase and testing phase. In the training phase, the 
LSTM-RNN model is trained using target domain training 
data or is pre-trained using related auxiliary data and fine-
tuned on the target domain data. In the testing phase, the 
trained LSTM-RNN is applied for sentence prediction. There 
are three key components: visual/acoustic encoding, text 
encoding and text decoding. 

 

 
Figure 1: Illustration of video description system 

3.1. Visual and Acoustic Encoding 
A CNN is applied for visual encoding. We use the pre-trained 
VGGNet [21] for visual feature extraction. A feature vector is 
extracted for each frame of the video and mean pooling is 
applied to produce the video-level visual encoding.  

For acoustic encoding, we first extract the single channel 
soundtrack from the video and re-sample it to 8kHz. We then 
apply feature extraction from the soundtrack. We use the Mel-
frequency Cepstral Coefficients (MFCCs) [22] as our 
fundamental feature. The Fast Fourier Transformation (FFT) 
[23] is first applied over short-time window of 25ms with a 
10ms shift. The spectrum of each window is warped to the 
Mel frequency scale, and the discrete cosine transform (DCT) 
[24] was applied over the log of these auditory spectra to 
compute MFCCs. Each video is then represented by a set of 
39-dimensional MFCC feature vectors (13-dimensional MFCC 
+ delta + delta delta). Finally, a bag-of-audio-words type of 
feature representation [25] is generated by applying an 
acoustic codebook to transform this set of MFCCs into a 
single fixed-dimension (4096) video-level feature encoding 
The 4096 acoustic codewords were trained using Kmeans 
clustering on the audio data that we collected from 
freesound.org as in [26]. 

3.2. LSTM-RNN for Text Encoding and Decoding 
Standard RNNs learn to map a sequence of inputs (X1,…,XN) 
to a sequence of outputs (Z1,...,ZN) via a sequence of hidden 
states (h1,…,hN). The memory cell in LSTM model encodes, at 

every time step, the knowledge of the inputs that have been 
observed up to that step. The cell is modulated by gates that 
are all sigmoidal. The gates decide whether the LSTM keeps 
or discards the value from them. The recurrences for the 
LSTM are defined as: !" = #($%&'" +$(&ℎ"*+) ," = #-$%.'" +$(.ℎ"*+/ 0" = #($%1'" +$(1ℎ"*+)                                               (1) 

  
where  represent the input gate, forget gate, 
output gate, memory cell and weight matrix respectively. !  is 
the sigmoidal non-linearity, "  is the tangent non-linearity, 
and   is the product with the gate value. 

After we extract the visual/acoustic features, we train 
and/or fine-tune a LSTM-RNN network as illustrated in Figure 
1. We employ LSTM-RNN to encode the sentence description 
of the video, and decode a visual/acoustic feature encoding of 
fixed length to generate natural language output. The encoding 
LSTM-RNN and decoding LSTM-RNN are shared. 

4. Experiments 
This section presents our video description experiments on the 
MSVD corpus and analysis of the impact of image amount vs 
caption amount on the image caption performance. 

4.1. Data Description 
We conduct our experiments on the Microsoft Research Video 
Description (MSVD) Corpus [27]. The MSVD corpus contains 
1970 YouTube clips with duration between 10 seconds to 25 
seconds, mostly depicting a single activity. Each video was 
then used to elicit short sentence descriptions from annotators. 
There are multi-lingual human-generated descriptions for each 
video in the corpus. We only use the English descriptions 
which amount to about 40 sentences per video. We split the 
video dataset according to [9] into a training set, a validation 
set and a testing set which consists of 1200 videos for training, 
100 for validation and 670 for testing. The training split 
contains about 48.7k text sentences; the validation split 
contains 4.3k text sentences and the testing split contains 
27.7k text sentences. We apply simple preprocessing on the 
text data by converting all text to lower case, tokenizing the 
sentences and removing punctuation. 

We also use the Microsoft COCO corpus [16], which is a 
new image recognition, segmentation, and captioning dataset, 
to pre-train the video description system based on visual 
information.  

To pre-train the video description system based on audio 
information, we collect more audio data in-the-wild from 
freesound.org which contains user-collected recordings with 
descriptions and tags. In total, we collect over 10,000 audio 
files with a total duration of about 200 hours, covering a wide 
range of sound categories such as activities, locations, 
occasions, objects, scenes, and nature sounds etc. Each audio 
comes with tags and descriptions made by its uploader, but the 
format and quality of the descriptions differ greatly from each 
other. To ensure the quality of the data we use to train our 
model, we only keep the description sentences that match the 
tags to avoid unrelated descriptions. In the end, each audio 
comes with a description of one or two sentences. 
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(a) Visual-only : a woman is cooking 

(b) Audio-only: a man is slicing a potato 

  
(a) Visual-only: A woman is talking 
(b) Audio-only: A woman is dancing 

 
Figure 2. An example description generated by the audio-only 

and visual-only system respectively 

4.2.  Evaluation Metric 
We use the METEOR [28] and BLEU [29] metrics which 
were originally proposed to evaluate machine translation 
results for quantitative evaluation of the video description 
system. The METEOR metric is designed to address some of 
the deficiencies inherent in the BLEU metric. The METEOR 
metric also includes some other features that are not 
considered in other metrics, such as synonymy matching, 
where instead of matching only on the exact word forms, the 
metric also matches on synonyms. The metric also includes a 
stemmer, which lemmatises words and matches on the 
lemmatised forms. 

4.3. Baseline Results 
For the visual-based video description system, we pre-train the 
LSTM-RNN on the MSCOCO dataset. We then fine-tune the 
model on the MSVD training set using a low learning rate. 
The system yields a METEOR score of 25.0% on the MSVD 
test set, which is comparable to the state-of-the-art description 
results as reported in [8-9]. The audio-based video description 
system achieves a METEOR score of 18.8% if we train the 
LSTM-RNN directly on MSVD training set. If the system is 
pre-trained on the freesound data as described in section 4.1 
and then fine-tuned on the MSVD training data, the METEOR 
score is improved to 19.6%. The results show that visual-only 
system achieves better description performance than audio-
only system. 

As we look closely into the videos in the MSVD corpus, 
we find that some videos are post-edited with pure music. For 
the purpose of investigating how much additional information 
that audio content can contribute to the visual-only based 
description, we think such videos may not be useful for this 
purpose. We therefore filter out those videos that are post-
edited with pure non-content-related music or with no 
soundtrack from the MSVD corpus. About 12% of the video 
data were filtered out, leaving 1729 videos in total in the 
following experiments. A METEOR score of 23.70% and 
20.21% is achieved respectively if the fine-tuned visual-only 
description system and audio-only description system are 
evaluated on the filtered test set. The performance of the 

audio-only system improves a bit but that of the visual-only 
system drops slightly which is not surprising since the filtering 
is biased towards audio. Although the visual-only system 
outperforms the audio-only system, from some detailed case 
analysis, we find that the audio-only system provides 
complementary information that the visual-only system fails to 
capture. For example in Figure 2, in a cooking video with a 
man’s voice in the background, the audio-only system detects 
“man” while the visual-only system confuses the gender of the 
cook. In the second example, the visual-only system predicts 
the description “A woman is talking”. While the audio-only 
system detects acoustic characteristics – the music playing in 
the room - and predicts the correct dancing activity and 
generates a better description “A woman is dancing”. 

 
Figure 3: Audio-visual combined video description system

4.4. Fusion of Acoustic and Visual Cues 
As shown in the above example that audio and visual 
information are complementary and should be combined for a 
better description system. We therefore construct a video 
description system using both visual and acoustic cues.  In this 
paper, we achieve the combination at the feature 
representation level by simply concatenating the video-level 
CNN visual features and the bag-of-audio-words acoustic 
features. We then train the LSTM-RNN model on the MSVD 
training set. The system structure is illustrated in Figure 3. To 
reduce the dimension of the simply concatenated audio+visual 
feature representation, we apply PCA on the bag-of-audio-
words feature to reduce its dimension to 400 before 
concatenation.  The description performance comparison in 
METEOR among the audio-only, visual-only and audio+visual 
combined systems is presented in Table 1. As we can see from 
the table, combining audio and visual cues together greatly 
improves the description performance over each single fine-
tuned baseline system. In Figure 4, we showcase some video 
description examples from visual-only system vs. audio+visual 
combined system. On these examples, the combined system 
achieves higher METEOR score than the visual-only system. 
The METEOR score is shown in the brackets following each 
sentence. We observe that the combined system can provide 
more accurate description such as identifying the correct 
gender of the person by taking the acoustic cues into account. 

Table 1: Comparison among the audio-only, visual-only and 
combined description systems (METEOR in %) 

System Audio Visual Combined 
METEOR 20.21 23.70 26.17 
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(a) Visual-only system: A woman is talking (35.06%) 

(b) Combined system: A man is talking (100%) 
(1) 

 
(a) Visual-only system: A woman is talking (27.68%) 

(b) Combined system: A woman is applying makeup (52.46%) 
 (2) 

 
(a) Visual-only system: A car is running (9.04%) 

(b) Combined system: A plane is flying (49.29%) 
 (3) 

Figure 4. Example descriptions from visual-only system vs. 
from combined system 

4.5. Impact on Description Performance 
We notice that the amount of available data for training a 
video description system is quite small compared to the 
amount of image caption data because generating a video 
description is more complex than generating an image caption. 
It is often the case that there are multiple manual descriptions 
or captions from different human annotators for a single video 
or image. Naturally we would ask the question: for training a 
good image caption or video description system, is it more 
important to have more video/image data or is it more 
important to have more manual caption data. The finding will 
guide us to make different focus on increasing the amount of 
video description training data.  We therefore conduct the 
following experiment to compare the image caption 
performance by changing the amount of training images and 
the amount of training captions to see which factor makes 
more impact on the caption performance.  

We use the Flickr8K dataset [30] which contains 8092 
images from the Flickr.com website as training dataset. There 
are five captions for each image that were generated by 
different annotators using a crowdsourcing service. We use 
1000 images from the Microsoft COCO [16] train2014 dataset 
as testing dataset. We compare caption results with the 
following three training setups. 

 
S1. Baseline setup: using all the 8092 images and all their 

captions to train the image caption system based on 
CNN+LSTM-RNN same as shown in Figure 1.  

S2. Reduce number of images: using randomly selected 
4000 images from the Flickr8K dataset and all their 
captions to train the image caption system. 

S3. Reduce number of captions: using all the 8092 images 
and randomly selecting 3 out of 5 captions for each 
image to train the image caption system.  

Table 2 compares the image caption performance in BLEU 
with the above three different training setups. We can see that 
reducing the number of captions leads to more performance 
degradation than reducing the number of images. Although the 
number of images*captions (8092*3=24,276) in S3 setup is 
larger than that (4000*5=20,000) in S2 setup, the image 
caption performance is worse. We therefore suspect that the 
number of various captions is more important for training an 
image caption system when limited amount of training data is 
available.  In the next steps, we will consider generating more 
descriptions via automatic expansion approaches for the 
training videos in MSVD dataset. We will verify its impact on 
the video description performance.  

 
Table 2: Image caption performance comparison with 

different training setups (BLEU in %) 
Training Setup BLEU1 BLEU2 BLEU3 BLEU4 
S1: Baseline 54.6 36.20 22.7 14.5 

S2: Reducing #images 53.3 34.4 21.3 13.6 
S3:Reducing #captions 51.9 33.3 20.1 12.6 

5. Conclusions 
Generating natural language descriptions of video content is a 
challenging problem. Most works for video description 
generation focus only on visual information in the video. 
However, audio also provides rich information for describing 
video contents. In this paper, we investigate using acoustic 
information in addition to the visual information in the video 
for natural language description generation. Our system relies 
on CNN and LSTM-RNN two networks. We simply combine 
both acoustic and visual information at the video 
representation level. Experiments on the Microsoft Research 
Video Description corpus show that fusing audio information 
improves the description performance greatly. Case studies 
show that audio information can fix the acoustically related 
errors in the visual-only description output. Therefore, there is 
a lot of benefit to explore using acoustic information for video 
description prediction. In this work, the visual and acoustic 
information are both captured at holistic video representation 
level.  

In the future work, we will explore more powerful 
representation by taking into account the sequential aspect and 
synchronizing visual and acoustic information for joint 
modeling. Through comparison experiments, we also observe 
that when limited amount of training is available, number of 
various captions is more important than number of various 
images. This will guide us to investigate in the future how to 
improve the video description system via increasing amount of 
training data in the future work.  
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